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ABSTRACT

The recent robust and homogeneous analysis of the worlgsrsava distance-
redshift data, together with cosmic microwave backgroumd laaryon acoustic os-
cillation data, provides a powerful tool for constrainingsmological models. Here
we examine particular classes of scalar field, modified graand phenomenological
models to assess whether they are consistent with obsmrgatven when their be-
havior deviates from the cosmological constAnt Some models have tension with
the data, while others survive only by approaching the cdésgical constant, and a
couple are statistically favored ovACDM. Dark energy described by two equation
of state parameters has considerable phase space to/aaoid next generation data
will be required to constrain such physics.
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1. Introduction

A decade after the discovery of the acceleration of the cosxpansion (Perlmutter et al.
1999; Riess et al. 1998) we still understand little aboutribture of the dark energy physics
responsible. Improved data continues to show consisteitbyBinstein’s cosmological constant
A\, and in terms of a constant equation of state, or pressurersitg, ratiow, the best fit to the
data isw = —0.969"0 523(stah "0 0os(sys), whereA hasw = —1 (Kowalski et al. 2008). However,
the magnitude oA\ required and the coincidence for it becoming dominant ssecto the present
remain unexplained, and an abundance of motivated or uaatet alternative models fills the
literature. Using the latest, most robust data availablexamnine the extent to which data really
have settled on the cosmological constant.

The vast array of models proposed for dark energy makes awsopaof every model in the
literature to the data a Sisyphean task. Here we select somsanodels with properties such as
well defined physical variables, simplicity, or featurespafticular physical interest. These em-
body a diversity of physics, including scalar fields, phaaeditions, modified gravity, symmetries,
and geometric relations. While far from exhaustive, theyjte roadmarks for how well we can
say that current data have zoomed in/oas the solution.

For such comparisons it is critical to employ robust datartyeinterpretable within these
“beyond/\” cosmologies. Geometric probes from the Type la supern{SaB distance-redshift
relation, cosmic microwave background (CMB) acoustic pgede shift parameter, and baryon
acoustic oscillations (BAO) angular scale serve this d&daole. Equally important is confidence
in the error estimates, incorporating systematics as wgedtatistical uncertainties. This has been
studied in detail in the recent unified analysis of the warfaliblished heterogeneous SN data sets
— the Union08 compilation (Kowalski et al. 2008).

This SN compilation includes both the large data samples filoe SNLS and ESSENCE
survey, the compiled high redshift SNe observed with thebtiiBpace Telescope, a new sample
of nearby SNe, as well as several other, small data sets.Ndll&ave been analyzed in a uniform
manner and have passed a number of quality criteria (suchwasghdata available in two bands
to measure a color, and sufficient lightcurve points to makeeaningful fit). The samples have
been carefully tested for inconsistencies under a blindetbpol before combining them into a
single final data set comprising 307 SNe, the basis for thayars. In this work the SNe data will
be combined with the constraints obtained from the baryaustic oscillation scale (Eisenstein
et al. 2005) and from the five year data release of WMAP andrgttwased CMB measurements
(Komatsu et al. 2008).

In Section 2 we describe the general method for cosmologiaedmeter estimation and
present a summary table of the various models consideredhanf statistics of the fit. Sec-
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tions 3—12 then briefly describe the dark energy models; gagameters, and show the likelihood
contours. The concluding discussion occurs in Section 13.

2. Constraining Models

Achieving informative constraints on the nature of darkrgg@equires restricting the degrees
of freedom of the theory and the resulting degeneraciesdarctismological model being tested.
One degree of freedom entering the model is the present mutsityQ,,. For the case of the
spatially flat cosmological constat model (or some of the other models considered below),
this is the sole cosmological parameter determining theadies entering the supernova (SN)
magnitude-redshift, baryon acoustic oscillation scale@B and cosmic microwave background
(CMB) shift parameter relations.

Generally, further degrees of freedom to describe the eatithe dark energy, i.e. its equation
of state (EOS), or pressure to density, ratio, are needealfdw cases the EOS is parameter free,
as in the/\ case wherev= —1, or is determined by the matter density, as in some subtates
(such as the flat DGP braneworld gravity model of 84). One wagategorize models is by the
number of independent EOS parameters, or general paranbetgond the matter density (so flat
A\ models have zero such parametésnodels with curvature have one). In general, current data
can deliver reasonable constraints on one parameter pigsos of dark energy.

In addition to exploring the nature of dark energy throughHOS, one might also include
another parameter for the dark energy density, i.e. alleptssibility of nonzero spatial curvature.
In this case individual probes then generally do a poor jafisttaining the model with current
data, although the combined data from SN+CMB+BAO can sonesistill have leverage. Since
crosschecks and testing consistency between probes istanp@as particularly illustrated below
in the DGP case), we consider spatial curvature only in theretise zero parameter casesof
and DGP, and for the constant EOS dark energy model.

In the following sections we investigate various one patameOS models, discussing their
physical motivation or lack thereof, and features of indgrand the observational constraints that
can be placed upon them. In the last sections we also ine¢stgpme two parameter models
of interest, with constrained physical behaviors and paldr motivations. As a preview and
summary of results, Table 1 lists the models, number of parars, and goodness of fit for the
present data.

The SN, CMB, and BAO data are combined by multiplying thelllk®@ods. Especially when
testing models deviating from the cosmological constast imist be careful to account for any
shift of the CMB sound horizon arising from violation of higkdshift matter domination on the
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CMB and BAO scales; details are given in Union08. Note thamealoubt exists on the use
of the BAO constraints for cosmologies other tha8DM, or possibly constanw, (Dick et al.
2006; Rydbeck et al. 2007) sindeCDM is assumed in several places in the Eisenstein et al.
(2005) analysis, e.g. computation of the correlation fiomctrom redshift space, nonlinear density
corrections, structure formation and the matter powertspec; and color and luminosity function
evolution. Properly, a systematic uncertainty should ®gagd to BAO to account for these
effects; however, this requires a complex analysis fromattginal data and we show only the
statistical error. At the current level of precision, siffiptl estimates show this does not strongly
affect the results, but such systematics will need to beddefar future BAO data. All figures use
the likelihood maximized over all relevant parameters desithose plotted, and contours are at
the 68.3%, 95.4%, and 99.7% confidence level.

Model Motivation Parameters  x? (stat) x? (Sys)
ACDM (flat) gravity, zeropoint  Qn 313.1 309.9
AX? (stat) Ax? (sys)

ACDM gravity, zeropoint Qm, Qa -1.1 -1.3
Constantv (flat) simple extension Qm, W -0.3 -1.2
Constaniv simple extension Qm, Qk, W -1.1 -1.6
Braneworld consistent gravity  Qm, Qk 15.0 2.7
Doomsday simple extension  Qp, t4oom -0.1 -0.7
Mirage CMB distance Qm, Wo -0.2 -0.1
Vacuum Metamorphosis induced gravity — Qm, Q. 0.0 0.0
Geometric DE Ry, kinematics ro,r1 (Qm,Wo) 0.1 -1.1
Geometric DE Righ matter era deviation Qm, We, 3 -1.9 2.2
PNGB naturalness Qm, Wo, f -0.1 -0.7
Algebraic Thawing generic evolution  Qm, Wp, p -1.6 -2.3
Early DE fine tuning problem Qpm,, wo, Qe -0.3 -1.2
Growingv-mass coincidence problemQp, Qe, M) -0.6 -1.6

Table 1: “Beyond\” dark energy models considered in this paper, together M@DM models.
Models are listed in the order of discussion, and the cosgicdbfitting parameters shown. The
x? of the matter plus cosmological constant case is given, dradreer models list thex? from
that model. The values refer to the best fit to the joint datahof CMB+BAO; in the last column
the SN systematics as analyzed in Union08 are included.

It is particularly important to note the treatment of sysaimerrors, included only for SN.
We employ the prescription of Union08 for propagation oftegsatic errors. This introduces a
new distance modulug®® = pu+ AM; + AM, which is simply the usual distance modulus=
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5log(Hod.(2)), wheredy (z) is the luminosity distance aridp the Hubble constant, shifted by a
sample dependent magnitude offdd; and a single sample independent magnitude ofid&t
added only for the higher redshift SNe % 0.2). The magnitude offset&M; reflect possible
heterogeneity among the SNe samples whilethkestep from SNe at < 0.2toz> 0.2 allows a
possible common systematic error in the comparison of lavihigh redshift SNe. TreatingM;
andAM as additional fit parameters, one defings = X%+ 3 (AM; /0w, )? 4 (AM/om)? to absorb
the uncertainty in the nuisance parametexg, and oy, and obtain constraints on the desired
physical fit parameters that include systematic errorss phocedure of incorporating systematic
errors provides robust quantification of whether or not a ehaglin conflict with the data and is
essential for accurate physical interpretation. See W8dar further, detailed discussion of robust
treatment of systematics within the current world hetenegeis SN data.

3. Constant Equation of State

Models with constant equation of statevithin 20%, say, of the cosmological constant value
w = —1, but not equal te-1, do not have much physical motivation. To achieve a cohstqua-
tion of state requires fine tuning of the kinetic and potdrmreergies of a scalar field throughout
its evolution. It is not clear that a constant# —1 is a good approximation to any reasonable
dynamical scalar field, wheme varies, and certainly does not capture the key physics. Mexe
since current data cannot discern EOS variation on timesdaks than or of order the Hubble
time, traditionally one phrases constraints in terms ofrestantw. We reproduce this model from
Union08 to serve as a point of comparison. Also see Unionf&fmdels using the standard time
varying EOSw(a) = wp+Wa(1—a), wherea=1/(1+ z) is the scale factor, and models witltz)
given in redshift bins.

In the constantv case the Hubble expansion parameéter a/a is given by
H2(2) /HE = Qm(1+2)° 4+ Qu(1+ 23T + O (1+2)2, (1)

whereQn, is the present matter densify,, the present dark energy density, dad=1— Qn— Qy
the effective energy density for spatial curvature.

Figure 1 shows the confidence contours inwh@, plane both without and with (minimized
in the likelihood fit) spatial curvature. Note that allowifgy spatial curvature does not strongly
degrade the constraints. This is due to the strong complemignof SN, CMB, and BAO data,
combined with the restriction to a constantodel. As shown in Union08, the constraint on cur-
vature in this model i€y = —0.010+0.012. See Union08 for more plots showing the individual
probe constraints.
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Fig. 1.— 68.3%, 95.4%, and 99.7% confidence level contoura @onstant EOSv and the
matter densityQ, for the individual and combined data sets. The left panelshimdividual
and combined probes in the flat universe case; the right papehts the combined systematics
contour, and also compares to the statistical only contmnu, to the systematics contour when
simultaneously fitting for spatial curvature.

4. Braneworld Gravity

Rather than from a new physical energy density, cosmic exa#n could be due to a mod-
ification of the Friedmann expansion equations arising fesnextension of gravitational theory.
In braneworld cosmology (Dvali et al. 2000; Deffayet et &02), the acceleration is caused by a
weakening of gravity over distances near the Hubble scadalleaking into an extra dimensional
bulk from our four dimensional brane. Thus a physical dar&rgy is replaced by an infrared
modification of gravity. For DGP braneworld gravity, the Hildexpansion is given by

2
H?/HG = (\/ Qm(1+z)3+9bw+\/nbw) +Qx(1+2)? (2)
— Qm(1+2)+ 200w+ 2/ Qo Om(1+ 23+ Qow, (flat). 3)
Here the present effective braneworld energy density is
1—Qm—Q)?
Quy — 1 Om_ O @)

41— Q)
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and is related to the five dimensional crossover sgatleM3,/(2M2) by Qpy = 1/(4HZr2). Note
that the only cosmological parameters for this model@keand Qi (or Qpy), SO it has the same
number of parameters &CDM.

The effective dark energy equation of state is given by thmpk expression

1-Q(2)
14+ Qm(2) — X%(2)’

w(z) = (6)
whereQm(z) = Qm(1+2)3/(H2/H2) and Qx(2) = Qk(1+2)2/(H?/H3). Thus the dark energy
equation of state at presenty, is determined byQ,, and Qy; while time varying, it is not an
independent parameter. So rather than plotvggs. Qn, or showing constraints on the somewhat
nonintuitive parameters; or Qpy, (but see the clear discussion and plots in Davis et al. (2007)
Rydbeck et al. (2007), though without systematics), Fiquiteistrates the confidence contours in
theQy-Qm plane. This makes it particularly easy to see how deviatimms flatness pull the value
of the matter density. In this and following figures, dotteshtours show the BAO constraints,
dashed for CMB constraints, dot-dashed for SN with systesiand solid contours give the joint
constraints.

For a flat universe, in order fav to approach-1 the matter density is forced to small values.
Alternately, pushing the curvature dendi2y negative, i.e. introducing a positive spatial curvature
k, allowsw ~ —1 with higher matter density. For a givew, the amount of curvature needed
can be derived from Eq. (6) to be approximat&Qy ~ —AQm/Qm, so to move a flatQ,, = 0.2
universe tdQy, = 0.3 require = —0.5, in agreement with the SN contour (being most sensitive
to wp) of Figure 2.

Note that the curvature density cannot exceed(,,, corresponding to an infinite crossover
scaler¢, so the likelihood contours are cut off at this line and thgioe beyond is unphysical.
However, this does not affect the joint contours. The BACadaintours do extend to the limit
Qx =1—Qm; hereQpy = 0, equivalent to the simple OCDM open, nonacceleratingarss.

Most importantly, the three probes do not reach concordan@egiven cosmological model.
The areas of intersection of any pair are distinct from ogf@rs, indicating that the full data dis-
favors the braneworld model, even with curvature. This ifhier quantified by the poor goodness
of fit to the data, with\x? = 2.7 relative to the flanNCDM model possessing one fewer parameter,
or Ax? = 4.0 relative toACDM allowing curvature. This indicates the crucial importe of cross-
checking probes. Moreover, if we had used only the stasiséstimates of uncertainties (see the
“SN stat” 68% cl contour of Fig. 2), we would have found tAxf = 15 rather than 2.7, and pos-
sibly drawn exaggerated physical conclusions — considehie DGP model 2000 times less likely
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Fig. 2.— The extradimensional DGP braneworld gravity matteds not achieve an acceptable fit
to the combined data, even allowing for a spatial curvatarameter. The joint best fit is in fact a
nearly flat model, but with poor goodness of fitx2 = 2.7 relative to theA\CDM case; also shown
is the statistical error only SN contour, which gives a jdigf = 15 relative taACDM.

than it really is, as an illustratidnInclusion of systematics is essential for robust inteiren of
results.

5. Doomsday M odel

Perhaps the simplest generalization of the cosmologicatent is the linear potential model,
pioneered by Linde (1986) and discussed recently by Wein2&08), motivated from high energy
physics. Interestingly, while this gives a current acagieg epoch, in the future the potential
becomes negative and not only deceleration of the expabsibcollapse of the universe ensues.
Hence the name of doomsday model.

1This is not quite fair as the braneworld model ak@DM model have distinct parameter spaces and the reduced
X2/ dof is only 1.07 for the statistics only braneworld case.sTihione area where Bayesian evidence methods, with
careful use of priors, would be useful for model comparison.
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The potential has two parameters: the amplitude and slope amplitude/y essentially
gives the dark energy density, which is fixed Qy, in a flat universe. (For the remainder of the
paper we assume a flat universe, for the reasons discuss@g iitg& slope/’ = dV/dg can be
translated into the present equation of state valgleThus this is a one parameter model in our
categorization. See Kallosh et al. (2003) for discussich@ftosmological properties of the linear
potential, Linde (1986) for a view of it as a perturbation abpero cosmological constant, and
Dimopoulos (2003) for links to the large kinetic term apmio@n particle physics. More recently,
this has been considered as a textbook case by Weinberg)(Za0&e will examine this model
in some detail. Such dark energy is an example of a thawinigrstiald (Caldwell & Linder
2005), starting withw(z > 1) = —1 and slowly rolling to attain less negative valueswgfthat
is, it departs from\. If it has not evolved too far from-1 then its behavior is well described by
W, ~ —1.5(14 wp) wherew(a) = wp +w,(1 —a). However we solve the scalar field equation of
motion exactly for all results quoted here.

As the scalar field rolls to small values of the potential tkeagsion stops accelerating, and
when it reache¥ = 0 thenw = 1. However it crosses through zero to negative values of the
potential, further increasing, and eventually the dark energy density itself crossesutitr@ero,
causingw to go to positive and then negative infinity. Thereafter thgative dark energy density,
acting now as an attractive gravitational force, causesnlytdeceleration but forces the universe
to start contracting. The rapid collapse of the universesem@ Big Crunch, or cosmic doomsday
in a finite time.

In the notation used in Weinberg (2008),¢) = Vo + (90— ¢o) V{, with V the potential energy
during the initial frozen state (during high Hubble drag afhhredshift) andv{ is the constant
potential slope. Figure 3 shows the constraints in this kigérgy physics plané-Vy. Note the
tight constraints on the initial potential eneigy, given in units of the present critical density. The
cosmological constant corresponds to the limivgf= 0, but the slope must always be less than
or of order 1012%in Planck units, i.e. unity when shown in terms of the presemirgy density, to
match the data.

We can also translate these high energy physics parametetsie recent universe quantities
of the matter densit@2,, and the present equation of statg Moreover, this is directly related to
the doomsday timgeom, Or future time until collapse. A useful approximation (tigh we employ
the exact solution) betweeg,om Wo, and the approximate time variation = —1.5(1+wp) is

tdoom~ O.5H0—1(1 +wp) 98~ O.6HO_1(—Wa)*O'8. @

Figure 4 shows the likelihood contours in ttgorQm andwp-Qn, planes. The 95% confidence
limit on tgoom from present observations is2BH; 2, i.e. we are 95% likely to have at least 17
billion more years before doomsday!
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Fig. 3.— Constraints on the linear potential model in terrhhe high energy physics quantities
of the primordial amplitude and slope of the potential. Nb&re is less complementarity between
some of the probes than for the constarhodel. Fig. 4 translates these constraints into ones on
the cosmological parameters.

6. MirageMod€

Given their limited sensitivity to the dynamics of dark egercurrent data can appear to
see a cosmological constant even in the presence of timatieeri This is called the “mirage
of A”, and we consider mirage models, with a form motivated bydhservations as discussed
below, specifically to test whether the concordance cosgydltolly narrows in on the cosmological
constant as the dark energy.

Since cosmological distances involve an integral over thergy density of components,
which in turn are integrals over the equation of state as atiom of redshift, there exists a chain
of dependences between these quantities. Fixing a distsunce asljss to the CMB last scattering
surface, can generally lead to an “attractor” behavior eneljuation of state to a common aver-
aged value or the value at a particular redshift. Specificaihder (2007) pointed out that if CMB
data fordiss is well fit by the ACDM model then this forces/(z ~ 0.4) ~ —1 for quite general
monotonic EOS. So even dark energy models with substaimtialariation could thus appear to
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Fig. 4.— The future expansion history in the linear potdnti@del has a collapse, or cosmic
doomsday, at a finite time in the future. The left panel shdwesconfidence contours for the time
remaining until collapse; the likelihood contours exteadfinity, with tyoom = o corresponding
to the A model. The contours can also be viewed in the equivalgr®,, plane (right panel).
Current data constraints indicate cosmic doomsday willbono sooner thar-1.24 Hubble times
from now at 95% confidence.

behave like the cosmological constantzat 0.4, near the pivot redshift of current data.

Since current experiments insensitive to time variatidrenently interpret the data in terms
of a constantv given by the EOS value at the pivot redshift, this in turn theasls to the “mirage
of A”: thinking thatw = —1 everywhere, despite models very different frdrbeing good fits. See
85.2 of Linder (2008b) for further discussion. (Also notattattempting to constrain the EOS by
combining the CMBd;ss with a precision determination of the Hubble constptonly tightens
the uncertainty on the pivot equation of state value (alyeéakien to be nearly-1) and so similarly
does not reveal the true nature of dark energy.)

We test this with a family of “mirage” models motivated by trexluced distance to CMB
last scatteringlss. These correspond to the one parameter subset of the two@aEOS model
w(a) = W+ Wz (1—a) with w, determined bwv; = —3.63(1+wyp). They are not exactly equivalent
to imposing a CMB prior sincelss will still change with Q,; that is, they essentially test the
uniqueness of the current concordance model for cosmolGi2M with Q,, = 0.28.
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For any model well approximated by a relatiosn = —A(1+wp), as this model (and the
previous one) is, the Hubble parameter is given by

H2/H§ _ Qm(1+z)3+ (1_ Qm) (1+Z)3(1+W0+Wa) e—3waz/(1+z) (8)
_ Qm(1+ 2)3_|_ (1 _ Qm) (1_|_ 2)3(1+W0)(1—A) e3A(1+W0)Z/(1+ ) ) (9)

Figure 5 shows constraints in the-Qn, plane. It is important to note thatis not constant in
this model. A significant range ofy (and hence a larger rangewf too, roughly+0.55to—1.1
at 68% cl) is allowed by the data, even though these modeleaklin an averaged sense like a
cosmological constant. Thus experiments sensitive toitthe variationw, (e.9.0(w;) < 0.36 to
know thatw(z) is really, not just apparently, within 10% ef1) are required to determine whether
the mirage is reality or not.

0.0 [T

-1.0 -

15 L
0.0 0.1 0.2 0.3 0.4 0.5

Fig. 5.— The mirage subclass of time varying dark energy $odte A in an averaged sense.
Note that CMB contours are almost vertical, indicating bibidt the mirage holds, preserving the
ACDM distance to last scattering, and yet imposes little ttairg onwp, and hencev,. Thus the
appearance df does not actually exclude time variation. The mirage is brokhen the equation
of state at high redshift exceeds the matter dominationevafwzero; this causes the wall in the
likelihood atwp =A/(1—-A) ~ —1.4.
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7. Vacuum Metamor phosis

An interesting model where the cosmic acceleration is dua ¢hange in the behavior of
physical laws, rather than a new physical energy densitihgsvacuum metamorphosis model
(Parker & Raval 2000; Caldwell et al. 2006). As in Sakharaw@uced gravity (Sakharov 1968),
guantum fluctuations of a massive scalar field give rise toas@ltransition in gravity when the
Ricci scalar curvatur& becomes of order the mass squared of the field, and fréetee. This
model is interesting in terms of its physical origin and meérst principles derivation, and further
because it is an example of a well behaved phantom field,wvith—1.

The criticality condition

R=6(H +2H?) = n? (10)
after the phase transition at redshzifteads to a Hubble parameter
me me
242 _ - 4,
H/Hy = (1 12)(1+z) +12, 2<%, (12)
m 1-Q,

/MG = (142 s

z2>7. (12)

There is one parametdd, = Qn(z), in addition to the present matter dendity,, where 1—
Q, is proportional to the cosmological constant. The varigal@andm are given in terms of2,
Q, by z = (MPQ, /[3Qm(4—3Q,)])Y3 — 1 andn? = 3Q1[(4—3Q,) /Q,]Y4[(4/mP) — (1/3)]~¥/4.
The original version of the model had fix€d = 1, i.e. no cosmological constant, but if the scalar
field has nonzero expectation value (which is not requiredhi® induced gravity phase transition)
then there will be a cosmological constant, &hddeviates from unity.

Figure 6 shows the confidence contours in theQn, plane. To consider constraints on the
original vacuum metamorphosis model, without an extra @sgical constant, slice across the
likelihood contours at th€), = 1 line. We see that the three probes are inconsistent with eac
other in this case, with disjoint contours (indeed fhy = 28.5 relative to flatn\CDM). Allowing
for a cosmological constant, i., # 1, brings the probes into concordance, and the best joint
fit approaches the lower bound of the reg@p > Q. The conditionQ, = Qn, corresponds to
the standard cosmological constant case, Qith= 1 — Qn,, since the phase transition then only
occurs atz = 0. Thus the data do not favor any vacuum phase transitiorhoAgh this model
comprises very different physics, and allows phantom bienathe data still are consistent with
the cosmological constant.
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Fig. 6.— The vacuum metamorphosis model involves a phassitian in gravitational laws due
to quantum effects. Where the quantum field inducing theigtaonal deviation has no additional
zeropoint energy, i.e. cosmological constant, ten= 1, and the data gives discordant results. As
the model approaches the. = Qn, line of pure cosmological constant plus matter without asgha
transition in the past, the data provide an increasinglyddao(Below the line, the transition takes
place further into the future, with no effect on the datalltkeod.)

8. Geometric Dark Energy

According to the Equivalence Principle, acceleration isiest in the curvature of space-
time, so it is interesting to consider geometric dark enetigy idea that the acceleration arises
from some property of the spacetime geometry. One examplei®involves the holographic
principle of quantum field theory as applied to cosmologyisTimits the number of modes avail-
able to the vacuum energy and so could have an impact on tmeotmgical constant problem
(Bousso 2002). The basic idea is that there is a spacelikedimensional surface on which all
the field information is holographically encoded, and theac@nt entropy bound relates the area
of this surface to the maximum mode energy allowed (UV citofihe vacuum energy density
resulting from summing over modes ends up being proportimndone area, or inverse square of
the characteristic length scale. However, what is perhagpsatural surface to choose, the causal
event horizon, does not lead to an energy density with actelg properties.
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Many of the attempts in the literature to overcome this haesvg increasingly distant from
the original concept of holography, though they often rethe name. It is important to realize that,
dimensionally, any energy density, including the vacuumrgy density, hap ~ L2, so merely
choosing some length does not imply any connection to quantum holography. Weetbes do
not consider these models but turn instead to the spacetimatare.

8.1. Ricci dark energy Riow

A different approach involves the spacetime curvaturectlyeas measured through the Ricci
scalar. Thisis similar in motivation to the vacuum metanmagis model of 87. Here we consider it
purely geometrically, with the key physical quantity bethg reduced scalar spacetime curvature,
in terms of the Ricci scalar and Hubble parameter, as in theetaf Linder (2004),

R
Q{zm:r(frrl(l—a). (13)

This quantity directly involves the acceleration. Morepwee can treat it purely kinematically,
as in the last equality above, assuming no field equationgmardics. Of course, any functional
form contains an implicit dynamics (see, e.g., Linder (20)8but we have chosen effectively a
Taylor expansion in the scale factarvalid for any dynamics for small deviations-1a from the
present, i.e. the low redshift or low scalar curvature regim

At high redshift, as +ais no longer small, we match it onto an asymptotic matter chareid
behavior fora < a = 1— (1—4rp)/(4r1). Solving for the Hubble parameter,

H2/Hg — a4(|’0+|’171) e4r1(17a) a> a (14)

Y

HZ2/HE = Qma® a<a. (15)

The matching condition determines

4r 4r. _ 1 4I’0+4I’171

Qm= (0—’——1) gl—4o, (16)
4rq

so there is only one parameter independent of the matteitgens

Note also that we can define an effective dark energy as tmabpthe Hubble parameter
deviating from the usual matter behavior, with equationtafesgenerally given by

_ -1
w(a) = - 3‘% [1— Qe Hama-ax)] ™ 17)
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For the particular form of Eq. (13) we have

1—4rg

Wo — 73(1—Qm) .

(18)
This model has one EOS parameter in addition to the mattesitger¥We can therefore explore
constraints either in the general kinematic plage;, or view them in theQ-wp plane. Figure 7
shows both.

SN w/ sys

3L
0.0

Fig. 7.— Geometric dark energy in thg,R model describes the acceleration directly through
the reduced Ricci scalar, or spacetime curvature. This eandwed in a kinematic sense, in the
ro-r1 plane, or in a dark energy sense in fBg-wp plane. The data favawg = —1 but this is not

A, instead representing distinct physics. Fg#r; > 1/4, above the diagonal line, early matter
domination is violated, and the CMB and BAO likelihoods alsthis region, as seen in the left
panel; the matter density also cannot then be uniquely dkfo¢he equivalent region is excluded
from the right panel.

Good complementarity, as well as concordance, exists arfengrobes in theg-r1 plane.
One obtains an excellent fit wittrg,r1) = (0.81,—0.72). The value ofR today,ro, approaches
unity, the deSitter value. Recall th& = 1/4 corresponds to matter domination, aid= 1/2 to
the division between decelerating and accelerating expanso this kinematic approach clearly
indicates the current acceleration of the universe.
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An interesting point to note is thatCDM is not a subset of this ansatz, i.e. the physics
is distinct. No values ofg andr; give aACDM cosmology. However, the Hubble diagram
for the best fit agrees with that faxCDM to within 0.006 mag out t@ = 2 and 0.3% in the
reduced distance to CMB last scattering. This is especiathresting as this geometric dark
energy model is almost purely kinematic. The agreementappe theQ-wp plane as contours
tightly concentrated aroundp = —1, despite there being no actual scalar field or cosmological
constant. Again we note the excellent complementarity betvthe individual probes, even in this
very different model.

8.2. Ricci dark energy Rnign

Rather than expanding the spacetime curvature aroundéiserrvalue we can also consider
the deviation from a high redshift matter dominated era. tTiawe start with a standard early
universe and ask how the data favors acceleration comingtalbo this second geometric dark
energy model (call it Rgn for high redshift or large values of scalar curvature), takig of X,
evolves from ¥4 at high redshift. From the definition &, it must behave asymptotically as

dH?
H2

1
A } ~ 5 [1+4a a3, (19)

wheredH? = (H2/H3) — Qm(1+2)3 is the deviation from matter dominated behavior, angdis
the associated, effective equation of state at high relsipiproximated as asymptotically constant.

Next we extend this behavior to a form that takes the reducaldiscurvature to a constant in
the far future (as it must if the EOS of the dominant compoigests to an asymptotic value):

1 aa MW
A2t Tpaaw (20)
So today® = 1/4+a/(1+B) and in the futureR = 1/4+ a/B. By requiring the correct form
for the high redshift Hubble expansion, one can relate tihampatersx and3 by

o = (3BWeo/4)[INQm/In(1+ B)], (1)

and finally
H?/H§ = Qa3 (1+ pa %)~ Inom/INA+H), (22)

The Ryigh geometric dark energy model has two paramei@nsdw.., in addition to the matter
densityQn. This is the first such model we consider, and all remainingetsalso have two EOS
parameters. Although current data cannot in general aatwily constrain two parameters, and
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so for all remaining models we do not show individual probestraints, if the EOS phase space
behavior of the model is sufficiently restrictive then razsale joint constraints may result.

Figure 8 shows the joint likelihoods in tf&,-w. andQn-3 planes, with the third parameter
minimized over. We see that the data are consistent withdabmological constant behaviet, =
—1in the past (this is only a necessary, not sufficient coowlitor ACDM), and indeed constrain
the asymptotic high redshift behavior reasonably well,artipular to negative values of,,. This
indicates that the Ricci scalar curvature definitely pieenearly-standard early matter dominated
era, i.e. the deviations faded away into the past. This hpsiitant implications as well for scalar-
tensor theories that would modify the early expansion hysto particular, the data indicate that
deviations in® must go approximately & (see Linder & Cahn (2007)) not @sas sometimes
assumed.

The parametep helps determine the rapidity of the Ricci scalar transia@ray from matter
domination. This varies betwedh= 0, giving a slow transition but one reaching a deceleration
parameter = —o in the asymptotic future, anl>> 1, giving a rapid deviation but with smaller
magnitude. A cosmological constant behavior fas 3, as discussed below.

Within the three dimensional parameter space, two subspaeeof special interest. One is
wherew,, = —1, a necessary condition for consistency withas mentioned. The other corre-
sponds to a deSitter asymptotic future, defined by the line

Bdes= Qm” — 1. (23)

Note that unlike the previous geometric modej,Rthe Ryigh model does includé as the limit
when both these conditions are satisfieg,= —1 and = Q1 — 1. This relation for the\ limit

is shown as a curve in th@,- plane. There is an overlap with the joint data likelihooaugh
one must be careful since the contours have been minimizedhav

Interestingly, we can actually use the data to test comgigtevith a de Sitter asymptotic
future. This is shown by the curve in tHe,-w, plane. We see that SN are the probe most
sensitive to testing the fate of the universe, with the SNt@manoriented similarly to the curve
given by Eqg. (23) that passes through the best fit. Thus treeatatconsistent withv,, = —1 and
with a de Sitter fate separately, though some tension ebésteeen satisfying them simultaneously.
Thus, this geometric dark energy may be distinct from thenmdsgical constant.

9. PNGB Model

Returning to high energy physics models for dark energy,airtee key puzzles is how to
prevent quantum corrections from adding a Planck enerdg scamological constant or affecting



- 19 —

0.0 10 [
8,
-0.5 [
6,
3 @ |
L 4,
-1.0 I
ol
151 ] (o) T I
0.0 0.1 0.2 0.3 0.4 05 0.0 0.1

Q

m

Fig. 8.— Geometric dark energy in the;f, model describes the acceleration directly through the
reduced Ricci scalar curvature and deviations from earlitandomination. The left panel shows
the Qm-Wo, plane, indicating the nature of the deviatiaw,(= O corresponds to no transition away
from matter domination), and the right panel shows®iep plane, indicating the rapidity and fate
of the deviation. The curve in the left panel correspondshetiver the fate of the universe is de
Sitter; we also show the individual probe constraints, fpfirio the de Sitter value (not minimizing
over 3 as for the joint contour), to show that SN closely map the dditie universe. In the right
panel the curve is the cut through parameter space, fixing —1, corresponding tdCDM.

the shape of the potential. This is referred to as the isstecbhical naturalness. Pseudo-Nambu
Goldstone boson (PNGB) models are technically natural tdweshift symmetry, and so can be
considered strongly physically motivated (perhaps everemmo tham\). See Frieman (1995) for
an early cosmological analysis of PNGB as dark energy ane@ mement work by Dutta & Sorbo
(2007); Abrahamse et al. (2008).

The potential for the PNGB model is

V(@) = Vi [1+cog g/ f)], (24)

with V, setting the magnitudd, the symmetry energy scale or steepness of the potentiaty and
the initial value of the field when it thaws from the high refisihigh Hubble drag, frozen state.
These three parameters determine, and can be thought afgtdy@nalogous to, the dark energy
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density, the time variation of the equation of state, andvidee of the equation of state. The
dynamics of this class of models is sometimes approximatgddosimple form

w(a) = —1+ (1+wp)a", (25)

with F roughly inversely related to the symmetry energy sdaleut we employ the exact numer-
ical solutions of the field evolution equation.

PNGB models are an example of thawing dark energy, wheredltedeparts recently from
its high redshift cosmological constant behavior, evajwioward a less negative equation of state.
Since the EOS only deviates recently frem= —1, the precision in measuring is more impor-
tant than the precision in measuring an averaged or pivot #Df. SN data provide the tightest
constraint onwg. In the future the field oscillates around its minimum witha@otential and
ceases to accelerate the expansion, acting instead likelatwistic matter.

Figure 9 illustrates the constraints in both the particlggats and cosmological parameters.
The symmetry energy scale could provide a key clue for revgéthe fundamental physics behind
dark energy, and it is interesting to note that these asysipal observations essentially probe
the Planck scale. For values bfbelow unity (the reduced Planck scale), the potential ispstg
causing greater evolution away from the cosmological @risdtate. However, the field may be
frozen until recently and then quickly proceed down the stelepe, allowing values ofig far
from —1 but looking in an average or constamsense likgw) ~ —1. Small values ofy/ f have
the field set initially ever more finely near the top of the moied; starting from such a flat region
the field rolls very little andv stays near-1 even today. In the limify/f = O the field stays at
the maximum, looking exactly like a cosmological constdrite two effects of the steepness and
initial position mean that the cosmological parameterlilii@d can accommodate boty ~ —1
andwp approaching 0 as consistent with current data. Howevegreeawith datand1+wy ~ 1
requiresf < 1 and fine tuning — e.g. for = 0.1 one must balance the field to within one partin a
thousand of the top. Thus in the left panel there exists asilily narrow tail extending along the
y-axis tof = 0. In the right panel, we show how taking more natural valigs0.5 removes the
more extreme values @iy caused by the unnatural fine tuning.

10. Algebraic Thawing M odel

While PNGB models involve a pseudoscalar thawing field, weatao consider scalar fields
with thawing behavior. Any such fields that are neither fingethinor have overly steep potentials
must initially depart from the cosmological constant bebaglong a specific track in the EOS
phase space, characterized by a form of slow roll behavidhenmatter dominated era. (See
Caldwell & Linder (2005); Linder (2006); Scherrer & Sen (&)0Cahn et al. (2008).) Here
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Fig. 9.—L eft panel: PNGB model dynamics involves a competition between thesiess of the
potential, given by the symmetry energy scéland the initial field positio / . If the potential

is very steepf < 1, the field will roll so rapidly to the potential minimum thtkte dark energy
density never becomes significant, unlessf is fine tuned very near zero. For natural energy
scale values near the Planck scdley 1, a wide variety ofg / f are viable Right panel: The field
spends a long period frozen, acting as a cosmological aonisédore thawing and evolving to a
present EOSvy. For steep potentials with < 1, the thawing can be rapid and result in evolution
to wp far from —1, yet still be consistent with data. The solid confidencelleentours in thevp-

Qm plane show PNGB results for energy scales 0.1, while the white outline contours consider
only PNGB models with more natural energy scaies 0.5; the latter favors models closer to the
cosmological constant behavior.

we adopt the algebraic thawing model of Linder (2008a), $igatly designed to incorporate this
physical behavior:

1+b \*P3
— p
1+w (1+wp)a (1+ba3) (26)
H2/HZ = Qma 3+ (1-Qm) exp{w{l—(l—a+aa3)p/3}}, 27)

wherea = 1/(1+b) andb= 0.3 is a fixed constant not a parameter. The two parametevganed
p and this form fulfills the physical dynamics condition notyto leading but also next-to-leading
order (Cahn et al. 2008).
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The physical behavior of a minimally coupled scalar fieldlenvg from a matter dominated
era would tend to havp € [0, 3]. Since we want to test whether the data points to such a tigawin
model, we consider values pfoutside this range. Results are shown in Figure 10.

For p < 0, the field has already evolved to its least negative valuwearfd returned toward the
cosmological constant. The more negafvs, the less negative (closer to 0) the extreme value of
w is, so these models can be more tightly constraineal@ests more strongly negative. Asgets
more positive, the field takes longer to thaw, increasingiitglarity to the cosmological constant
until recently, when it rapidly evolves tmy. Such models will be very difficult to distinguish from
A. If we restrict consideration to the physically expectengep < [0, 3], this implieswy < —0.57
at 95% confidence in these thawing models, so consideraslanaigs remains allowed under
current data. This estimation is consistent with the twa#gethawing models already treated,
the doomsday and PNGB cases.

The goodness of fit to the data is the best of all models coresidieere, even taking into
account the number of fit parameters. This may indicate tleskould be sure to include a
cosmological probe sensitive ¥y (not necessarily the pivot EO&,) and to recent time variation
Wz, such as SN, in our quest to understand the nature of dargyener

4

-1.0

Fig. 10.— Algebraic thawing model incorporates the expeqibysical behavior of a thaw-
ing scalar field rolling slowly from a matter dominated erauc® a model is a fairly generic
parametrization for this class of physics whes [0, 3], and has a strong goodness of fit.
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11. Early Dark Energy

The other major class of dark energy behavior is that of freemodels, which start out
dynamical and approach the cosmological constant in tiweilugon. The tracking subclass is
interesting from the point of view again of fundamental pbgsnotivation: they can ameliorate
the fine tuning problem for the amplitude of the dark energysitg by having an attractor behavior
in their dynamics, drawing from a large basin of attractimmitial conditions (Zlatev et al. 1999).
Such models generically can have nontrivial amounts of dagkgy at high redshift; particularly
interesting are scaling models, or tracers, where the deetgg has a fixed fraction of the energy
density of the dominant component. These can be motivatetdilaation symmetry in particle
physics and string theory (Wetterich 1988).

As a specific model of such early dark energy we adopt that chid& Robbers (2006), with

1—Qm— Qe(1—a3W) 3w
Q = Qe(1-— 0 28
oE(8) = =g e+ Qe(l—a M) (28)
for the dark energy density as a function of scale faaterl/(1+z). HereQpeg = 1— Qq, is the
present dark energy densify, is the asymptotic early dark energy density, agds the present

dark energy EOS. In addition to the matter density the twaipaters ar€e andwyg.

The Hubble parameter is given y2/HZ = Qma 3/[1— Qpe(a)]. The standard formula
for the EOS,w = —1/(3[1— Qpg(a)])dInQpe(a)/dIna, does not particularly simplify in this
model. Note that the dark energy density does not act to @atelexpansion at early times, and
in factw — 0. However, although the energy density scales like matteigha redshift, it does not
appreciably clump and so slows growth of matter densityupkations. We will see this effect is
crucial in constraining early dark energy.

Figure 11 shows the constraints in f2g-Qe andQe-Wg planes. Considerable early dark en-
ergy density appears to be allowed, but this is only becaesesed purely geometric information,
i.e. distances and the acoustic peak scale. The high retihible parameter for a scaling solution
is multiplied by a factor 1,/1— Qe relative to the case without early dark energy (see Dorah et a
(2007a)). This means that the sound horizon is shifted dauptos ~ /1 — Qe, but a geometric
degeneracy exists whereby the acoustic peak angular staleeqpreserved by changing the value
of the matter densit@, (see Linder & Robbers (2008) for a detailed treatment). degeneracy
is clear in the left panel.

However, as mentioned, the growth of perturbations is glsoaffected by the unclustered
early dark energy. This suppresses growth at early timasdijrig to a lower mass amplitudg
today. To explore the influence of growth constraints, westigate adding a growth prior of 10%
to the data, i.e. we require the total linear growth @gj to lie within 10% of the concordance
model. The innermost, white contour of the left panel of Rifj.shows the constraint with the
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growth prior. In the right panel we zoom in, and sh@ vs. wp, seeing that the degeneracy is
effectively broken. The amount of early dark energy is laditoQe < 0.038 at 95% cl. Similar
conclusions were found in a detailed treatment by Doran. é2@07b).

We find a convenient fitting formula is that for an early darleigy model the total linear
growth to the present is suppressed by

Ago [ Qe o
= (0.01) x 5.1%, (29)

relative to a model witl2e = 0 but all other parameters fixed. Thus appreciable amourgarbf
dark energy have significant effects on matter perturbatiand we might expect nonlinear growth
to be even more sensitive (e.g. see Bartelmann et al. (2006))
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Fig. 11.— Early dark energy represents an example of a figaniodel with interesting particle
physics motivations. The left panel shows the constraintQgandQ, from purely geometric
data, as used throughout this article. The degeneracyrevi¢he contours leaves the acoustic
scales unchanged, but hides the shift in the sound horiamsedaby early dark energy, leading to
possible misinterpretation of the correct cosmologicatlelo The degeneracy can be broken by
adding growth information, here a 10% prior on total lineavgth (orog), as shown by the white
outline contours. This tightly restricts the early dark gyedensity to contribute no more than a
few percent. The right panel shows g-wp constraints including the growth prior.
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12.  Growing Neutrino M odel

While freezing or scaling models such as the early dark gnergdel just considered are
interesting from the physics perspective, they genesidadve difficulty in evolving naturally to
sufficiently negative EOS by the present. The growing neatmodel of Amendola et al. (2007);
Wetterich (2007) solves this by coupling the scalar field tassive neutrinos, forcing the scalar
field to a near cosmological constant behavior when the mastigo nonrelativistic. This is an
intriguing model that solves the coincidence problem tgfoagosmological selection (the time
when neutrinos become nonrelativistic) rather than tuttieg_agrangian.

The combined dark sector (cosmon scalar field plus massrgmeutrinos) energy density

Qg + 20, (a%2 — ad)
Qgs(a) = a> 30
as(@) 1—Qqgs(1—a3) +2Qy(a%2 —a3)’ & (30)

Qgs(a) = Qe, a<a, (31)

whereQgs=1— Qn is the present dark sector energy density. The Hubble paeawen be found

by H?/H3 = Qma3/[1— Qqs(a)] as usual. The two free dark parameters are the neutrino mass
or densityQ, = m,(z= 0)/(30.8n?eV) and the early dark energy densfds. The transition scale
factora; is determined by intersection of the two behaviors giver(igga).

The equation of state is

Qpa3/2
st"‘ ZQv(a_3/2 — 1) ’

w=—1+ a>a (32)
with w = 0 before the transition, i.e. a return to the standard eatik énergy model. One can
therefore translat®, orm,(z=0) intowp = -1+ Q,/Qq4s= -1+ Qy/(1— Qn).

Figure 12 shows the constraints in thg(z = 0)-Qe plane. As in the previous early dark
energy model, the geometric degeneracy is clear. Againpnwieeadd growth information in the
form of a 10% prior on the total linear growth (or the mass aaceas), the constraints tighten
considerably, as shown in the right panel. The 95% confidéed limit on the neutrino mass
from this current cosmological data is ther ¢h/0.7)? eV (1.2 if only statistical uncertainties are
taken into account). These limits are comparable to asyphl constraints from similar types of
data applied to standard, constant mass neutrinos (Gobak2006; Tegmark et al. 2006). Note
that because the neutrino mass grows due to the couplingathe today can actually be larger
than that at, say, ~ 3 where Lyman alpha forest constraints apply (Seljak etG62.
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Fig. 12.— Growing neutrino model, coupling a dark energyascield to massive neutrinos, can
solve the coincidence problem. The left panel shows thetrings from purely geometric data,
while the right panel (note the different vertical scaledisd 10% prior on total linear growth (also
see Fig. 11). The neutrino mass today becomes tightly ainstt to an interesting range, and
comparison with laboratory limits could lead to evidencealfying neutrino mass.

13. Conclusion

We have considered a wide variety of dark energy physice glifterent from the cosmolog-
ical constant. These include a diversity of physical osgior the acceleration of the expansion:
from dynamical scalar fields to dark energy that will eveltjuzause deceleration and collapse, to
gravitational modifications arising from extra dimensionfrom quantum phase transitions, to ge-
ometric or kinematic parametrization of the acceleratiordark energy that may have influenced
the early universe and that may have its magnitude set byab&ino mass. The comparison to
ACDM and constaniv cases covers 5 one-parameter and 5 two-parameter darkyexggrgtion of
state models. (Linder & Huterer (2005) detail how even nextaggation data will not generically
be able to tightly constrain more than two such parameters.)

Two key results to emphasize are that current data 1) arastenswith /A, and 2) are also
consistent with a diversity of other models and theoriegnewhen we restrict consideration to
those with at least modest physical motivation or justifaat As explicitly shown by the mirage
model, any inclination toward declaringthe answer based on consideration of a constetms
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an overly restricted view. The need for next generation sMag®ns with far greater accuracy, and
the development of precision growth probes, such as weaitgtianal lensing, is clear. All major
classes of physics to explain the nature of dark energy drengtlay.

However there are already quite hopeful signs of immineogpess in understanding the na-
ture of dark energy. For example, for the braneworld modgittcontrol of systematics would
decrease the goodness of fitAg® = +15, even allowing for spatial curvature, diminishing its
likelihood by a factor 2000 naively, effectively rulingtdhe model. For the doomsday model, im-
proving errors by 30% extends our “safety margin” againstwa collapse by 10 billion years — a
nonnegligible amount! Every improvement in uncertainpashes the limits on the neutrino mass
within the growing neutrino model closer toward other gstrgsical constraints — plus this model
essentially guarantees a deviation fram= —1 of 0.1(m,p/eV), excitingly tractable. Terrestrial
neutrino oscillation bounds already provide within thisdabthat 1+w > 0.005.

As points of interest, we note that the model with noticegiugitiveAx? relative toA, and
hence disfavored, is completely distinct from the cosmiglaig-onstant, i.e. the braneworld model
has no limit within its parameter spaces equivalert.t@ his does not say that no such model could
fit the data — th&,,, model is also distinct from but fits as well as many models. Certainly many
successful models under current data do look in some aveéssgEse like a vacuum energy but this
does not necessarily point to static dark energy. Two semativations to continue looking for
deviations are that physicists have failed for 90 years fgaéx the magnitude required for a
cosmological constant, and that the previous known ocooeef cosmic acceleration — inflation
— evidently involved a dynamical field not a cosmological stant.

To guide further exploration of the possible physics, wehhght those models which do
better than/\: the geometric dark energy and algebraic thawing appr@acl@ne of the sole
models where adding a degree of freedom is justified (albedestly) by the resulting reduction
in x2 is the Riigh model directly studying deviations of the spacetime cumefrom the matter
dominated behavior. This has one more parameter than tis¢gectnw EOS approach, butimproves
in X% by 1. In addition, it has a built-in test for the asymptoticSiter fate of the future expansion.
We recommend that this model be considered a model of intieneuture fits. The other model
improving by at least one unit gf is the algebraic thawing model, performing better than theo
thawing models, with a general parametrization explidnigorporating the physical conditions
imposed by matter domination on the scalar field dynamics.

The diversity of models also illustrates some propertieghefcosmological probes beyond
the familiar territory of vanillaACDM. For example, for the algebraic thawing and other such
evolutionary models, the premium is on precisionwgf and wy; much more than the averaged
or pivot EOS valuav,. Not all models possess the wonderful three-fold complearéy of the
probes seen in the constamtase; for many of the examples BAO and CMB carry much the same
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information as each other. However, we clearly see thatferyemodel SN play a valuable role,
complementary to CMB/BAQO, and often carries the most imgoarphysical information: such as
on the doomsday time or the de Sitter fate of the universeeoPtanck scale nature of the PNGB
symmetry breaking.

The diversity of physical motivations and interpretatiofigcceptable models highlights the
issue of assumptions, or priors, on how the dark energy dhmetave. For example, in th&,
model should priors be flat iry, r1 or in Qm, Wp; in the PNGB model should they be flat in
@/f orin Qm, wo, etc.? Lacking clear physical understanding of the appatgpriors restricts
the physical meaning of any Bayesian evidence one mighuleaécto employ model selection;
the x2 goodness of fit used here does not run into these complicati can obscure physical
interpretation.

We can use our diversity of models for an important consesteast of our understanding
of thedata If there would be systematic trends in the data which do etty project into the
ACDM parameter space (i.e. look like a shift in those paramgt¢ghen one might expect that
one of the dozen models considered might exhibit a signifigdoetter fit. The fact that we do
not observe this can be viewed as evidence that the datadeoedihere is not flawed by sig-
nificant hidden systematic uncertainties. The data utiliseUnion08 compilation of uniformly
analyzed and crosscalibrated Type la supernovae datdjtating the world’s published set, with
systematics treated and characterized through blindettaten The data are publicly available
at http://supernova.lbl.gov/Union, and will be suppleteeinas further SN data sets become pub-
lished; the site contains high resolution figures for thiggraas well.

However, to distinguish deeply among the possible physbsia dark energy requires major
advances in several cosmological probes, enabling strengjt&vity to the time variation of the
equation of state. This is especially true for those modwes @are now or were in the past close
to the cosmological constant behavior. We are getting osir gliimpses looking beyond, but
await keen improvements in vision before we can say we utatgighe new physics governing
our universe.

We thank Andy Albrecht, Robert Caldwell, Roland de Putt¢éeyv8n Weinberg, and Christof
Wetterich for helpful discussions. This work has been suggoin part by the Director, Office
of Science, Office of High Energy Physics, of the U.S. Departhof Energy under Contract No.
DE-AC02-05CH11231. M.K. acknowledges support from the tSelve Forschungsgemeinschaft
(DFG).
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